Refine Your Search

Topic

Search Results

Standard

SAE J1939 Network Security

2017-03-06
WIP
J1939-91
This document will provide recommendations to vehicle manufacturers and component suppliers in securing the SAE J1939-13 connector interface from the cybersecurity risks posed by the existence of this connector.
Standard

Security Recommendations for Interfaces to On-vehicle Networks

2021-08-06
WIP
J1939-91A
This document will provide recommendations to vehicle manufacturers and component suppliers in securing the SAE J1939 network from the cybersecurity risks. It is recognized that not every application of SAE J1939 networks requires the same level of cyber security measures.
Standard

CAN FD Data Link Layer

2023-04-25
WIP
J1939-22
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Journal Article

Real-Time Network Defense of SAE J1939 Address Claim Attacks

2021-08-30
Abstract Heavy vehicles are essential for the modern economy, delivering critical food, supplies, and freight throughout the world. Connected heavy vehicles are also driven by embedded computers that utilize internal communication using common standards. However, some implementations of the standards leave an opening for a malicious actor to abuse the system. One such abuse case is a cyber-attack known as the “Address Claim Attack.” Proposed in 2018, this attack uses a single network message to disable all communication to and from a target electronic control unit, which may have a detrimental effect on operating the vehicle. This article demonstrates the viability of the attack and then describes the implementation of a solution to prevent this attack in real time without requiring any intervention from the manufacturer of the target devices. The defense technique uses a bit-banged Controller Area Network (CAN) filter to detect the attack.
Standard

Hardware Protected Security for Ground Vehicles

2020-02-10
CURRENT
J3101_202002
Access mechanisms to system data and/or control is a primary use case of the hardware protected security environment (hardware protected security environment) during different uses and stages of the system. The hardware protected security environment acts as a gatekeeper for these use cases and not necessarily as the executor of the function. This section is a generalization of such use cases in an attempt to extract common requirements for the hardware protected security environment that enable it to be a gatekeeper. Examples are: Creating a new key fob Re-flashing ECU firmware Reading/exporting PII out of the ECU Using a subscription-based feature Performing some service on an ECU Transferring ownership of the vehicle Some of these examples are discussed later in this section and some have detailed sections of their own. This list is by no means comprehensive.
Standard

Requirements for Probe Data Collection Applications

2022-06-09
CURRENT
J2945/C_202206
Connected vehicles can provide data from multiple sensors that monitor both the vehicle and the environment through which the vehicle is passing. The data, when shared, can be used to enhance and optimize transportation operations and management—specifically, traffic flow and infrastructure maintenance. This document describes an interface between vehicle and infrastructure for collecting vehicle/probe data. That data may represent a single point in time or may be accumulated over defined periods of time or distance, or may be triggered based on circumstance. The purpose of this document is to define an interoperable means of collecting the vehicle/probe data in support of the use cases defined herein. There are many additional use cases that may be realized based on the interface defined in this document. Note that vehicle diagnostics are not included within the scope of this document, but diagnostics-related features may be added to probe data in a future supplemental document.
Technical Paper

Review on CAN Bus Protocol: Attacks, Difficulties, and Potential Solutions

2023-04-11
2023-01-0926
The new generation vehicles these days are managed by networked controllers. A large portion of the networks is planned with more security which has recently roused researchers to exhibit various attacks against the system. This paper talks about the liabilities of the Controller Area Network (CAN) inside In-vehicle communication protocol and a few potentials that could take due advantage of it. Moreover, this paper presents a few security measures proposed in the present examination status to defeat the attacks. In any case, the fundamental objective of this paper is to feature a comprehensive methodology known as Intrusion Detection System (IDS), which has been a significant device in getting network data in systems over many years. To the best of our insight, there is no recorded writing on a through outline of IDS execution explicitly in the CAN transport network system.
Journal Article

A Centrally Managed Identity-Anonymized CAN Communication System*

2018-05-16
Abstract Identity-Anonymized CAN (IA-CAN) protocol is a secure CAN protocol, which provides the sender authentication by inserting a secret sequence of anonymous IDs (A-IDs) shared among the communication nodes. To prevent malicious attacks from the IA-CAN protocol, a secure and robust system error recovery mechanism is required. This article presents a central management method of IA-CAN, named the IA-CAN with a global A-ID, where a gateway plays a central role in the session initiation and system error recovery. Each ECU self-diagnoses the system errors, and (if an error happens) it automatically resynchronizes its A-ID generation by acquiring the recovery information from the gateway. We prototype both a hardware version of an IA-CAN controller and a system for the IA-CAN with a global A-ID using the controller to verify our concept.
Journal Article

Towards a Cyber Assurance Testbed for Heavy Vehicle Electronic Controls

2016-09-27
2016-01-8142
Cyber assurance of heavy trucks is a major concern with new designs as well as with supporting legacy systems. Many cyber security experts and analysts are used to working with traditional information technology (IT) networks and are familiar with a set of technologies that may not be directly useful in the commercial vehicle sector. To help connect security researchers to heavy trucks, a remotely accessible testbed has been prototyped for experimentation with security methodologies and techniques to evaluate and improve on existing technologies, as well as developing domain-specific technologies. The testbed relies on embedded Linux-based node controllers that can simulate the sensor inputs to various heavy vehicle electronic control units (ECUs). The node controller also monitors and affects the flow of network information between the ECUs and the vehicle communications backbone.
Training / Education

Managing Energy Data: Advanced Analytics

Anytime
Introduction to Managing Energy Data: The Internet of Things (IoT) revolution (eg. the vast spread of smart meters worldwide) is generating massive amounts of energy data, drastically transforming the sector and current energy systems. This digital transformation gives rise to more intelligent ways of managing energy and brings about opportunities for energy companies to improve their business models and services. This course contains a brief introduction to the topics presented in the course, from smart meters and smart metering data to data science.
Standard

Requirements for a COTS Assembly Management Plan

2020-08-03
CURRENT
EIA933C
This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document. For purposes of this document, COTS assemblies are viewed as electronic assemblies such as printed wiring assemblies, relays, disk drives, LCD matrices, VME circuit cards, servers, printers, laptop computers, etc. There are many ways to categorize COTS assemblies1, including the following spectrum: At one end of the spectrum are COTS assemblies whose design, internal parts2, materials, configuration control, traceability, reliability, and qualification methods are at least partially controlled, or influenced, by ADHP customers (either individually or collectively). An example at this end of the spectrum is a VME circuit card assembly.
SAE MOBILUS Subscription

Wiley Cyber Security Collection Add-On

2018-03-23
As an annual subscription, the Wiley Cyber Security Collection Add-On is available for purchase along with one or both of the following: Wiley Aerospace Collection Wiley Automotive Collection The titles from the Wiley Cyber Security Collection are included in the SAE MOBILUS® eBook Package. Titles: Network Forensics Penetration Testing Essentials Security in Fixed and Wireless Networks, 2nd Edition The Network Security Test Lab: A Step-by-Step Guide Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis Applied Cryptography: Protocols, Algorithms and Source Code in C, 20th Anniversary Edition Computer Security Handbook, Set, 6th Edition Threat Modeling: Designing for Security Other available Wiley collections: Wiley SAE MOBILUS eBook Package Wiley Aerospace Collection Wiley Automotive Collection Wiley Computer Systems Collection Add-On (purchasable with the Wiley Aerospace Collection and/or the Wiley Automotive Collection)
Standard

VENDOR COMPONENT PROGRAM DATA FILE INTERFACE FOR OEM ASSEMBLY OPERATIONS

1997-02-01
HISTORICAL
J2286_199702
This interface document SAE J2286 revises the requirements for file formats as described in SAE J1924. This document describes Interface 1 (I/F 1) in SAE J2214. This document does not imply the use of a specific hardware interface, but may be used with other hardware interfaces such as SAE J1939. The requirements of SAE J2286 supersede the requirements defined by SAE J1924.
Best Practice

AVSC Information Report for Change Risk Management

2023-04-12
CURRENT
AVSC00010202304
AVSC Information Report for Change Risk Management AVSC00010202304 provides a process for change risk management for fleet-operated ADS-DVs using level 4 or 5 automation. The document addresses risks resulting from planned and unplanned changes in an ADS-DV design and/or operation. This information report is based on the concept of risk-informed decision-making. Making risk management decisions such as safety and change management, safety analysis, and safety assurance are especially applicable when moving from concept to production intent for the ADS-DV. Change Risk Management (CRM) does not replace best practices or other methods for managing safety anomalies or change management processes. It may instead be viewed as an additional resource that elaborates on how safety anomaly management and change management can be performed.
Magazine

SAE Truck & Off-Highway Engineering: February 2019

2019-02-01
Over-the-air affair Remote updating of software and firmware on commercial trucks and off-highway machines is on the rise, not only for maintenance functions but also to add new features like operator-assist technology. Developments in engine-based gensets With demand for generator sets steady and regulatory change settling, suppliers can rationalize their offerings and push improvements in areas like noise abatement and economy. Testing, testing and even more testing The commercial-vehicle market is eager to adopt more ADAS and automated-driving innovations, but before those technologies get to the road they must first pass rigorous testing practices that prove their efficacy. Smart and connected powertrains FPT Tech Day reveals multi-power Cursor X concept, other "4.0 innovations" for hydrogen fuel cell, electric and natural gas propulsion.
Magazine

SAE Truck & Off-Highway Engineering: August 2019

2019-08-01
Electric machines find their niche Smaller machines working in cities are particularly ripe for electrification, but most off-highway applications will retain the internal-combustion engine. Big data, big benefits Data mining helps users and equipment developers use data from on-vehicle sensors to work more efficiently. Data connectivity in harsh environments Ensuring high-speed data transmission requires OEM designers to think more about components, placement and the impact of environmental conditions early in design. Trucks with intuition Perceptive Automata partners with Volvo Trucks to demonstrate AI technology that can determine when pedestrians will cross the road. Change is afoot Cummins and its CTO help focus the 2019 SAE COMVEC on the fast-shifting technology landscape that faces both on- and off-highway sectors. Editorial AI, ADAS & AVs-oh my!
Magazine

SAE Truck & Off-Highway Engineering: February 2018

2018-02-01
Electrification not a one-size-fits-all solution Efforts in the off-highway industry have been under way for decades, but the technology still faces implementation challenges. SuperTruck redux A year plus into phase two of the promising DOE program to dramatically improve freight efficiency, project leads from three of the participating truck OEMs share their progress thus far and technology paths moving forward. From research to reality Danfoss works closely with off-highway OEMs throughout the development process, testing and demonstrating machines packed with new technology features. Big Data a focus for 2018 SAE President Mircea Gradu Velodyne CQO sees use of Big Data as a way to capitalize on multiple industry trends including vehicle electrification and automated vehicles.
Magazine

SAE Truck & Off-Highway Engineering: August 2020

2020-08-06
Big future for e-axles, advanced motors Top transmission engineers claim driveline electrification will transform everything from all-wheel drive to Class 8 tractor-trailers. Big data's benefits keep a-comin' Gigabytes of data are being collected and increasingly mined to improve field operations, maintenance and even vehicle design. Transformative times Despite a challenging climate, technology development progresses - as does the sharing of innovative ideas - virtually. Editorial Zeroing in on zero emissions Softing envisions secure, reliable predictive maintenance Reconstructing accidents in the ADAS age Paving the way to improved truck fuel efficiency Nikola looks to accelerate production, hydrogen infrastructure Mecalac designs unique-pivoting swing loader Q&A' Horiba's Joshua Israel discusses complex regulatory landscape's impact on commercial-vehicle development and shift to electrification.
Magazine

SAE Off-Highway Engineering: December 2, 2016

2016-12-02
Autonomous plows ahead Agriculture, construction, mining-even marine-are advancing autonomous technology to improve the productivity and safety of vehicles on the job. Expediting engine design Simulation tools drive development of the most complex, fuel- efficient and powerful engines ever seen in off-highway applications. Industry 4.0: The smart factory arrives The plants that produce vehicles and their high-tech systems are increasingly employing intelligent systems, Big Data and advanced analytics to improve quality, safety and efficiency. The future is not so far-off Enhanced Cat 3500 engine boosts power 20%, trims fuel usage by 10% Phase 2 GHG rules driver for advanced technology, alternative fuels Eaton demonstrates waste heat recovery, variable valve actuation for HD diesels Hyliion develops add-on hybrid system for semi-trailers that reduces fuel consumption by 30% Tech-heavy Iveco Z Truck concept spawns 29 patents EPA's Grundler talks Phase 2 regs
Magazine

Mobility Engineering: September 2015

2015-09-01
The advent of stop-start technology As environmental concerns grow for R&D teams, OEMs look to bring the strategy further into the mainstream. Recycling opportunities for hybrid/electric vehicle lithium-ion batteries With limited reserves and strict environmental regulations, re-cyclers look to established extraction means to reuse, recycle, and dispose of the used batteries. Cameras look to go the distance Automakers seek vision systems with greater distances, improved reliability, and more functionality, thanks to ruggedized complementary metal-oxide semiconductor technologies. Getting right with composites With composites now a mainstay in most new aircraft de-signs, the engineering emphasis has switched from understanding if they work to thinking through the most efficient way to manufacture them, such as using design-for-manufacturing software.
X